
Journal of Sound and <ibration (2002) 252(1), 83}113
doi:10.1006/jsvi.2001.4028, available online at http://www.idealibrary.com on
A WAVENUMBER APPROACH TO MODELLING THE
RESPONSE OF A RANDOMLY EXCITED PANEL, PART I:

GENERAL THEORY

C. MAURY, P. GARDONIO AND S. J. ELLIOTT

Institute of Sound and <ibration Research, ;niversity of Southampton, Southampton SO17 1BJ,
England. E-mail: cm@isvr.soton.ac.uk

(Received 15 December 2000, and in ,nal form 30 August 2001)

Part I of this paper presents a self-contained analytical framework for determining the
vibro-acoustic response of a plate to a large class of random excitations. The wavenumber
approach is used, which provides an insight into the physical properties of the panel
response and enables us to evaluate e$ciently the validity of several simplifying
assumptions. This formulation is used in Part II for predicting the statistical response of an
aircraft panel excited by a turbulent boundary layer. In this paper, we "rst provide a general
statement of the problem and describe how the spectral densities of the panel response can
be obtained from an analysis of the system response to a harmonic deterministic excitation
and a statistical model for the forcing "eld. The harmonic response of the system is then
expanded as a series of the eigenmodes of the #uid-loaded panel and these #uid-loaded
eigenmodes are approximated by a perturbation method. Then, we evaluate the conditions
under which this series simpli"es into a classical modal formulation in terms of the in vacuo
eigenmodes.
To illustrate the use of a wavenumber approach, we consider three examples, namely, the

vibro-acoustic response of a panel excited by an incidence di!use acoustic "eld, by a fully
developed turbulent #ow and by a pressure "eld which is spatially uncorrelated from one
point to another. Convergence properties of the modal formulations are also examined.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

In the wavevector}frequency approach, the properties of a space}time "eld are analyzed in
terms of the spatial and temporal Fourier variables of the "eld. The method arises from
a cross-fertilization among several disciplines such as #uid dynamics (analysis of turbulent
#ows), vibro-acoustics (#uid}structure interaction problems) and signal processing (spectral
analysis of random "elds). A number of studies have used the wavevector}frequency
analysis, which is reviewed by Strawderman [1], who also presents a self-contained and
general description of this theory.
This approach has two main advantages. First, it enhances the analytical tractability of

the problem and provides complete or partial closed-form solutions which can considerably
reduce the computational e!ort. Second, the wavevector}frequency analysis allows
a physical interpretation of the problem, especially in terms of "ltering e!ect of the system,
but also expresses how some characteristics of the system are distributed among the
wavevector and frequency variables, i.e., the rate of change of these characteristics with
respect to distance and time.
Interest in the wavevector}frequency analysis has grown with studies concerned with the

design of "lters used to measure the wavevector}frequency content of a spatially distributed
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd.
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stationary random process, such as the wall-pressure #uctuations beneath a turbulent
boundary layer, either with an array of transducers [2, 3] or a planar elastic structure [4, 5].
Wavenumber}frequency measurements have provided useful information about the energy
content of the wall-pressure "eld in the low wavenumber domain and thus, complement the
space}time correlation measurements already obtained by Corcos [6], which are
completely valid only at or near the convective wavenumber. Various empirical or
semi-empirical turbulent boundary layer models have thus been formulated in the
wavevector}frequency domain with di!erent ranges of validity [7}9].
These models are appropriate to predict the vibrating and acoustic response of

a structure excited by a turbulent #ow with one dimension parallel to the streamwise
direction of the #ow [10}12]. The vibro-acoustic response can then be interpreted as the
result of passing the excitation spectrum through a three-dimensional "lter (frequency and
two wavenumber components) characterized by a sensitivity function which only depends
on the geometrical and mechanical properties of the structure. The visualization on a graph
of the spectral contents of both the excitation and the sensitivity function provides
a straightforward interpretation for the spectral distribution of the system response.
An important aspect of this theory is the required accuracy for both the excitation model

and the wavenumber}frequency sensitivity function of the structure and their relationship.
In some in"nite structures, for which the sensitivity function is known exactly, the accuracy
of the excitation completely determines the accuracy with which the system response can be
calculated. However, the accuracy of the numerical approximations used to determine the
sensitivity function for "nite and complex structures relies on the validity of the simplifying
assumptions for the model, and also, on the quality of the approximation method
(convergence, consistence, etc). Several studies have already considered the in#uence of
a turbulent excitation model on the system response [13, 14].
In this paper, we are primarily concerned with the a priori determination, for a given

model of random excitation, of the required accuracy of the sensitivity function and its
in#uence on the system response, particularly the number of modes used in the expansion of
the structural response. The second objective of this study is to present a method that
enables di!erent types of general random excitations to be accounted for. A large class of
random processes can be considered as weakly stationary, i.e., when their moment functions
only up to order 2 depend on the di!erence in the parameter values indexing the process. If
the parameter stands for a spatial variable, then the term &&stationary'' is commonly replaced
by the term &&homogeneous''. An example of a weakly stationary and weakly homogeneous
random process is the wall-pressure #uctuations induced by a turbulent boundary layer
over the fuselage panel of an aircraft or a submarine under cruise conditions, as long as we
consider a portion of the #ow far away from surface irregularities [15]. Another example is
the structural or fatigue response of an automobile during a journey, in which it travels at
a constant speed on a road with a surface roughness that generates weakly stationary
vibrations of the car body (among other sources of vibrations) [16]. In general, the
conditions for the existence of the spectral decomposition of such random processes are not
satis"ed. Hence, we propose a general analysis based on the use of the impulse response
method [17] to determine the statistical properties of the system response to a class of
weakly stationary processes, but that could also account, with a few modi"cations, for
non-stationary processes.
This paper is organized as follows. In section 2, we describe a self-contained theoretical

model of wavevector}frequency analysis for the prediction of the sound transmitted
through a ba%ed panel excited by a random process in time and space. It will be established
that the statistical properties of the panel response depend on the statistics of the excitation
through the response of the #uid-loaded panel to an ensemble of harmonic plane waves
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scaled on each contributing wavevector. In section 3, a series expansion in terms of the
#uid-loaded eigenmodes of the panel will be used to solve the corresponding set of
harmonic problems and quantitative criteria will be derived under which the usual
simpli"cations, such as neglecting the #uid-loading e!ects or assuming the statistical
independence of the eigenmodes, are valid. Finally, numerical example are presented in
section 4 for di!erent types of excitations and the convergence properties of the
approximation method for the sensitivity function are covered in appendix A.

2. GENERAL STATEMENT OF THE PROBLEM

In the three-dimensional domain R�, we consider the Cartesian set of co-ordinates
(O; x, y, z). A thin elastic (or visco-elastic) plate of length a, of width b and of constant
thickness h�(a, b), occupies the space domain de"ned by

�x"(x, y, z): 0(x(b, 0(y(a,!h/2(z(h/2�. (1)

For simplicity, the plate is assumed to be homogeneous and isotropic. Its vibrations are
modelled by the Kirchho+ 1s thin plate equation which is the simplest approximation that
can be established for a plate. All the structural quantities will therefore, be de"ned over the
mean surface � (z"0) of the plate. Along its boundary ��, an external normal vector n can
be de"ned almost everywhere. The complement � � of � is a perfectly rigid ba%e.
The mechanical characteristics of the plate are: a bending sti!ness D"Eh�/12(1!�� )

and a mass per unit area m"�h where E, � and � are the Young's modulus of elasticity, the
Poissons' ratio and the density of the material. The mechanical damping is either due to
internal dissipation mechanisms in the plate material or to energy losses through the plate
boundaries. The &&hereditary'' damping formulation used by Preumont [18] provides
a general model from which the hysteretic and viscous damping formulations can be
deduced.We will account for the tensioning e!ects through lateral and longitudinal positive
restoring forces termsN

�
andN

�
acting in the plane of the undeformedmiddle surface of the

plate.
The ba%ed plate separates two domains ��(z'0) and ��(z(0) which both contain

perfect #uids which are characterized by the densities �� and �� with the corresponding
sound velocities c� and c�. The forcing "eld is described by a force density which depends
randomly on space and time variables. The plate vibrations induced and the acoustic
pressure radiated in both #uid domains are also described by a random process.
Figure 1. The panel con"guration with co-ordinate system.
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In the case of a convecting random pressure "eld (turbulent boundary layer excitation),
the y-axis is parallel to a #ow moving in the domain �� with the constant speed ;

�
(see

Figure 1). The panel is then excited by the wall-pressure #uctuations induced by a turbulent
boundary layer developed along the interface #uid/ba%ed plate.

2.1. HYPOTHESIS

We assume that the de#ections are small in comparison to the thickness of the plate and
so, we restrain our model to the linear domain where the in#uence of the mid-plane
stretching on the tension terms can be neglected.
The following assumptions are speci"c to a turbulent #ow excitation. First, the turbulent

boundary layer is assumed to be fully developed when exciting the plate. Second, we will
consider that the wall-pressure #uctuations are not a!ected by the vibrations of the plate,
i.e. that the forcing term is not modi"ed by the panel response [19]. This assumption holds
as long as the #ow-induced displacements, are much smaller than the characteristic length
scales of the #ow and as long as we are further downstream from the transitional boundary
layer so that the #ow is robust to small perturbations due to the plate vibrations. Thus the
turbulent excitation term is modelled by the wall-pressure #uctuations that would be
observed on a smooth rigid wall, also called the blocked pressure p

�
. This approximation

makes the problem more tractable. An exact approach, based upon the Lighthill}Curle
theory of aerodynamic sound generation [20], would be to consider the plate excited by the
acoustic pressure generated by moving acoustic sources and with an integral representation
which requires the solution of the entire #ow"eld. Third, we assume that the sound pressure
radiated in�� is not signi"cantly a!ected by the #uid #ow in��. So, for the acoustic wave
propagation in��, we consider that the #uid is at rest. However, we limit our predictions to
Mach numbers lower than 0)8, as the external radiation damping can still be considered as
negligible with respect to the internal radiation damping and the mechanical damping of the
plate in this Mach number range. For transonic and supersonic Mach numbers, it can be
shown that the aeroelastic structural acoustic coupling has a signi"cant in#uence on the
sound power inwardly radiated [21].
In summary, we have to evaluate the vibro-acoustic response of a plate in contact with

a quiescent #uid and excited by a force density with known statistical properties.

2.2. GOVERNING EQUATIONS

Let w (x; t) be the instantaneous #exural displacement of the mean surface of the plate at
the point x of co-ordinates (x, y, 0) and at the time t; let p�(z; t) and p�(z; t) stand for the
acoustic pressure "elds at the points z of co-ordinates (x, y, z*0) and (x, y, z)0),
respectively, in �� and �� and at the time t. The pressure step p

�
(x; t) across the plate is

de"ned by

p
�
(x; t)"p

�
(x, y, 0; t)"lim

���
[p�(x, y, z; t)!p�(x, y,!z; t)], z'0. (2)

The functions w (x; t), p�(z; t) and p�(z; t) satisfy, for each realization of the process, the
following system of equations:

�L�
#�*

�	�

�L�
�

�t
#m

��

�t�� w (x; t)"!p
���
(x; t)!p

�
(x; t), x3�, (3)
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where

L
�
(w)"D�

��w

�x�
#

��w

�y��
�
!N

�

��w

�x�
!N

�

��w

�y�
,

�� �!

1

c�
$

��

�t�� p$(z; t)"0, z3�$, (4)

�
$

��w

�t�
(x; t)#

�p$

�z
(x; t)"0, x3�, (5)

�p$

�z
(x; t)"0, x3��, (6)

w(x; 0)"
�w
�t
(x; 0)"0, x3�, (7)

p$(x; 0)"
�p$

�t
(x; 0)"0, x3�$, (8)

boundary conditions for w on ��, (9)

outgoing wave conditions for p$ in �$. (10)

Equation (3) governs the structural response of the #uid-loaded plate under membrane
tensions and excited by the total acoustic pressure "eld induced by both the forcing pressure
"eld p

���
(x; t)"b�(x)p�(x; t), where b�(x) is the space-limiting function associated to the

plate domain, and the acoustic pressure discontinuity p
�
. The hereditary damping term

�*
�	�

�L�
�
(w)/�t involves a convolution integral with respect to time between �, the heredity

function, and the plate velocity passed through a spatial operatorL�
�
[18]. These quantities

will be speci"ed in the next paragraph according to the damping mechanism.
This equation is completed by initial conditions (7) and local boundary conditions (9)

satis"ed by w along its entire periphery ��. The simplest one corresponds to the case of
a simply supported plate (w"��



w"0 on ��) or the case of a clamped plate (w"�



w"0

on ��). But, boundary integral representations of w can take any other conditions into
account [22].
The acoustic pressure "elds p� and p� satisfy the homogeneous d'Alembert equations (4),

respectively, in the #uid domains �� and ��, the homogeneous Neumann boundary
condition (6) on the ba%e, the initial conditions (8) and a condition of energy conservation
(10) at in"nity. Since the #uid is assumed to be perfect and at rest, equation (5) expresses the
continuity condition between the normal acceleration of a point vibrating on the structure
and a #uid particle at its neighbourhood.
The set of equations (2}10) governs the vibrating motion of the #uid-loaded ba%ed plate

stressed by in-plane tensions, initially at rest and excited by a random "eld.

2.3. GREEN FUNCTION REPRESENTATION OF THE DISPLACEMENT OF THE
FLUID-LOADED PLATE

The basic methodology developed in this subsection and in the next enables one to
evaluate the wavevector}frequency response of space-limited, time-invariant linear systems.
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It leads to the classical expressions (29, 36) for the spectral densities of the stochastic "elds in
the wavenumber domain. Such expressions have already been used in similar studies
[10, 13]. However, for the sake of completeness, we will describe the main steps of the proof.
Moreover, many authors [11, 23, 24] have directly solved the time-Fourier transform of the
set of equations (2}10) although, according to the author in references [16, 25], the Fourier
transform of some random processes, such as the weakly stationary "elds, is not de"ned, at
least in a classical way. As an alternative, our approach does not require such
a transformation. But, since both approaches lead to the same result, it is instructive to
show their correspondence (see Part II, Appendix A.3. in the case of a TBL excitation).
Introducing the space}time impulse response 	(x, x�; t) of the system #uid/ba%ed plate,

the principle of superposition applied to a space-varying time-invariant linear system (see
equations (2}10)) leads to an integral representation of the displacement of the #uid-loaded
plate in terms of the random excitation p

�
, as follows [17, Chapter 7.1]:

w (x; t)"�	 *�x	� 	� p���� (x; t)"
	

�
�

��
�

	 (x, x�; t!
)p
�
(x�; 
) d
 d�x�, (11)

where *
�x	� 	�

denotes a convolution product with respect to space and time variables and
	(x, x�; t), also called the Green function of the system in the physical domain, can be de"ned
as the inverse time-Fourier transform of the Green function 	 (x, x�; �), in the
space}frequency domain:

	(x, x�; t)"
1

2�

��

�
��

	(x, x�; �)e��	 d�. (12)

	(x, x�; �) satis"es the following system of equations:

(L
�
#j��(�)L�

�
!m��)	(x, x�; �)"!�x	

(x)!p
�
(x, x�; �), (x, x�)3�, (13)

(�#k�
$
)p$(z, x�; �)"0, (z, x�)3�$��, k

$
"�/c

$
, (14)

�p$

�z
(x, x�; �)"�

$
��	(x, x�; �), (x, x�)3�, (15)

�p$

�z
(x, x�; �)"0, (x, x� )3��, (16)

boundary conditions for 	 (x, x�; �) when x3��, (17)

Sommerfeld conditions for p� and p�, (18)

where p$(z, x�; �) is the sound pressure radiated at the point z in �$ due to a harmonic
point force �x	

(x)e��	 acting normally on the plate at the point x� ; �x	
(x)"�x	

(x)�y	
(y) is the

Dirac delta function at the point x� of co-ordinates (x�, y�, 0); p
�
(x, x�; �) is the pressure step

across the plate at the point x on �. Physically, 	 (x, x� ; �) represents the #exural response,
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i.e., the out-of-plane displacement, at the point x on �, of a ba%ed plate in contact with two
#uids occupying the semi-in"nite domains �$ and excited by a harmonic unit point force.
� is the angular frequency and k

$
is the acoustic wavenumber in each #uid domain. In

equation (13), if we assume that the mechanical damping is hysteretic, then � (�) is given
b  sign(�)/� where  is the hysteretic loss factor and L�

�
"L

�
[26]. Assuming a viscous

damping, the heredity function is constant and L�
�
is the identity operator [18].

2.4. VIBRO-ACOUSTIC RESPONSE OF AN ELASTIC PANEL TO A SPACE AND TIME STOCHASTIC
EXCITATION

In this section, we will "rst derive the wavevector}frequency spectrum associated to the
vibro-acoustic response of the ba%ed plate excited by a space-limited forcing pressure "eld.
Then we will discuss the advantages of a wavenumber}frequency formulation.

2.4.1. Spectral density of the structural response

The forcing term is modelled by the stochastic "eld p
�
(x; t) the statistics of which are

usually assumed to be both stationary and homogeneous up to order 2 [15]. Thus, the
auto-correlation function R

����
of the random process has the functional form

R
����
(�; 
)"E[p

�
(x; t)p

�
(x#�; t#
)], (19)

where �"x�!x is the spatial separation vector, 
 is the time di!erence and E denotes the
mathematical expectation (or space}time average). The wavevector}frequency spectrum of
the excitation pressure p

�
(x; t) is denoted S

����
(k; �) and is de"ned as the space}time Fourier

transform of the auto-correlation function R
����
(�; 
); that is, in terms of the

space}frequency spectrum, S
����
(�; �) of the excitation pressure;

S
����
(k; �)"��

�

S
����
(�; �)e �k�d�� (20)

and

S
����
(�; �)"

��

�
��

R
����
(�; t)e���	dt, (21)

where the wavevector k"(k
�
, k

�
) and the angular frequency � are the Fourier dual

variables, respectively, of � and 
.
Because we consider a spatially non-uniform system, the Green function 	(x, x�; t),

de"ned by equations (31}18), depends on the absolute spatial variable x. Thus, the statistics
of the displacement "eld given by (11) are stationary, but non-homogeneous. It follows that
the auto-correlation function R

��
associated with the plate displacement is given by

R
��
(x, x�; 
)"E[w(x�; t� )w (x, t�#
)]. (22)

Substitution of equation (11) into de"nition (22) yields an integral representation of the
auto-correlation function R

��
in terms of the auto-correlation function R

����
for the
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excitation "eld:

R
��
(x, x�; t)"

��

�
��

��

�
��

��
�

��
�

	(x, x�; t!
)R
����
(x���!x�; 
�!
)

�	(x�, x���; t!
�) d�x���d�x� d
�d
. (23)

By "rst performing a time-Fourier transform on equation (23) and then making use of
equations (12) and (21), we obtain the following expression for the space}frequency spectrum
S
��
(x, x�; �) of the plate displacement:

S
��
(x, x�; �)"��

�

��
�

	 (x, x�;!�)S
���� ����

(x���, x�; �)	 (x�, x���; �) d�x� d�x��� (24)

"��
�

��
�

	 (x, x�;!�)S
����
(x���!x�; �)	(x�, x���; �) d�x�d�x���, (25)

where S
���� ����

(�; �) is the space}frequency spectrum of the forcing pressure "eld.
Equation (25) is a classical expression that has been used by many authors to evaluate the

response of a #uid-loaded plate to a turbulent wall-pressure [23, 24, 27}31]. However,
recent advances in the modelling of turbulence have provided expressions for the
wall-pressure #uctuations given in the form of a wavevector}frequency power spectrum
[7, 14] and an increasing number of studies are now considering formulations in the
wavenumber}frequency domain [11, 13, 32, 33].
According to equation (20), the space}frequency spectrum S

����
(�; �) can be expressed in

terms of the wavenumber}frequency spectrum S
����
(k; �) as follows:

S
����
(�; �)"

1

(2�)�

��

�
��

��

�
��

S
����
(k; �)e��k�d�k. (26)

When substituted in equations (24) and (25), we recognize the two wavevector}frequency
response �� (k, k� ) and the space-varying wavevector-frequency response �� (x, k�),
respectively, de"ned by

�� (k, k�)"��
�

��
�

	 (x, x�; �)e � (k ' x#k� 'x� ) d�xd�x�, (27)

��(x, k�)"��
�

	(x, x�; �)e�k� ' x� d�x�, (28)

where k and k� are, respectively, the Fourier dual variables of the absolute spatial variables
x and x�. It then follows that the space}frequency spectrum (25) of the structural response of
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the plate is related to the wavevector}frequency spectrum of the homogeneous excitation
"eld S

����
(k; �) by

S
��
(x, x�; �)"

1

(2�)�

��

�
��

��

�
��

�
��(x; k�)S

����
(k�; �)��(x�;!k�) d�k�. (29)

Note that ��(x, k�) is the space-varying Green function de"ned in the
wavevector}frequency domain and can be interpreted as the sensitivity function at position
x of the #uid-loaded plate, to a harmonic excitation with the angular frequency� and when
the excitation pressure p

�
scales on the contribution of the wavevector k�. ��(x, k�) is

determined by the following system of equations:

(L
�
#j��(�)L�

�
!m��)�� (x, k� )"!e�k� ' x

![¹�� (x, k� )!¹�� (x, k� )], x3�, (30)

(�#k�
$
)¹$

� (z, k� )"0 ∀z3�$, (31)

�¹
$

�
�z

(x, k�)"�
$

����(x, k�) ∀x3�, (32)

�¹
$

�
�z

(x, k�)"0 ∀x3��, (33)

boundary conditions for �� (x, k� ) when x3��, (34)

Sommerfeld radiation conditions for ¹�� and ¹�� . (35)

In consequence of de"nition (27) substituted in equation (24), the two
wavevector}frequency spectrum S

��
(k, k�; �) of the structural response of the plate is related

to the two wavevector}frequency spectrum of the non-homogeneous forcing "eld
S
���� ����

(k, k�; �) by

S
��
(k, k�; �)"

1

(2�)
 ��
�

��
�

�
��(k�, k�!k��� )S

���� ����
(k���, k�;�)

��� (k�!k, k���!k� ) d�k�d�k���. (36)

Expressions (23, 25, 29, 36) are equivalent. They describe, either in the physical domain or
in the Fourier domain, the relationship between the statistics of the structural response of
a space-limited time-invariant system and the statistics of a random space}time forcing "eld
that can be considered as homogeneous over the plate domain or non-homogeneous over
the in"nite plane that extends the plate. Figure 2 shows a synoptic diagram which
summarizes the methodology we have considered.

2.4.2. Spectral density of the acoustic response

The space}frequency spectrum S
�$�$

(z, z�; �) of the acoustic pressure "elds radiated
in the #uid domains �$ is given by the following expression, which is formally similar



Figure 2. Input}output relationships in the physical or in the Fourier domains with the following notations: F
	
,

time}Fourier transform; F� , frequency}Fourier transform; F�
, space}Fourier transform; F


, wavenumber}Fourier

transform.

92 C. MAURY E¹ A¸.
to equation (29):

S
�
$

�
$(z, z�; �)"

1

(2�)�

��

�
��

��

�
��

¹
$

��(z, k� )S
����
(k�; �)¹$*

� (z�,!k�) d�k�, (z z�)3�$. (37)

The radiated sound pressure transfer responses¹
$

� (z, k�) satisfy the set of equations (30}35)
and are related to the displacement "eld by

¹
$

� (z, k�)"$�
$

�� ��
�

G$

� (z!x�)�� (x�, k�) d�x�. (38)

G$

� are the Green functions of the Helmholtz equation for acoustic propagation in each
half-space �� or ��. They satisfy the homogeneous Neumann condition on (z"0) and
the Sommerfeld condition at in"nity. They are given by

G$

� (z!z� )"!

e�$�(z, z�)

4�r (z, z�)
!

e�$�(z, z�)

4�r(z, z�
�
)
, (z, z�)3�$��$, (39)

where the co-ordinates of the points z� and z�
�
are, respectively, (x�, y�, z�) and (x�, y�,!z�).

r(z, z�) denotes the distance between z and z�.
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Expression (38) corresponds to the Green representation of the acoustic pressure transfer
responses in the spatial domain. In the wavenumber domain, it reads as

¹
$

� (z, k� )"$

�
$

��

(2�)� � ��
�k��)k$

j��(k�, k�)

�k�
$

!�k���
e�

j[k� 'xGz�k�
$
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d�k�� , z"(x, z), x3�. (40)

This expression is numerically di$cult to evaluate and we will prefer to use its spatial
counterpart (38) which only involves integrable functions de"ned over a "nite domain.
However, the wavevector}Fourier transform (40) simpli"es into:
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A formally similar expression will be used in Appendix A of Part II to evaluate the accuracy
of our approximations in the simple case of an in"nite two-dimensional plate excited by
a turbulent boundary layer.

2.4.3. Spectral densities for the power quantities

In order to obtain the expressions for the spectra associated with the power quantities of
interest (input power, radiated acoustic power and structural dissipated power), one needs
to establish a power balance equation based upon the weak (energetic) form of the
governing equations (2}10).
To this end, equation (2), which is equal to the force per unit area on the panel, is

multiplied by the out-of-plane velocity component �w/�t(x� ; t#
) (denoted wR ). Evaluating
the mathematical expectations (or ensemble averaging) and performing the time}Fourier
transform of each term yields the following relationship between several spectral densities in
the space}frequency domain:

SL
� ����

(x; �)#j��(�)SL	� ����
(x; �)!m��S

��
(x; �)

#S
���
(x; �)!S

���
(x; �)"S

���
(x; �). (42)

The power balance is then obtained by integrating equation (42) over the surface of the
plate and by equating the imaginary parts or radiative components of each quantity
involved, yielding;

S�(�)#S��(�)!S�� (�)"S
�
(�), (43)



94 C. MAURY E¹ A¸.
where S� , S�$ and S
�
are, respectively, the structural dissipated power, the acoustic power

radiated in �$ and the input power. They are determined by the following expressions:
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(k; �)��� , ��� (k) d�k (viscous damping), (44)

where � is a viscous damping force per unit area of the plate and per unit velocity,
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Another quantity of interest is the structural response of the system which is
characterized by the kinetic energy of the plate, denoted S

��
(�). It is given by
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The following bi-linear forms have been introduced in expressions (44}46):
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The quadratic forms a (u, u), �� (u, u) and �u, u� are, respectively, proportional to the
bending energy of the plate, to the energy radiated by the plate into the #uid and to the
kinetic energy of the plate when driven by a harmonic excitation "eld. In expression (46) for
the input power, �� (k) is de"ned by

�� (k)"��
�

�� (x; k )e�
k ' xd�x"���(x; k), e��k 'x�. (51)

It is the spatial Fourier transform of the space-varying wavevector}frequency response of
the plate.
Note, from equations (29, 37, 44}47), that the statistics for the response of the system
#uid/ba%ed plate in the space-varying wavevector}frequency domain can be obtained from
the spectrum of the excitation S

����
(k; �) passed through a wavevector}frequency "lter

which is related only to the mechanical and geometrical properties of the system. An
equivalent representation of the system response is given by expression (25), but, to our
opinion, the interpretation in terms if spatial "lters is less intuitive.
In the case of a convecting random pressure "eld, recent models for turbulence are often

formulated using a wavevector}frequency spectrum and this mathematical form can easily
be taken into account in expressions (29, 37, 44}47). These expressions are computationally
more e$cient than those formulated in the space}frequency domain. Indeed, comparing the
alternative forms (25) and (29) for the plate displacement, the expression (29) only requires
the numerical evaluation of a double in"nite integral of a function maximum around the
origin (k

�
, k

�
)"(0, 0), bounded and absolutely integrable over the wavenumber domain.

Indeed, this function is represented by the product of two functions: the wavevector
sensitivity function, the contribution of the "rst plate mode which is shown in Figure 3,
and the power spectral density of the turbulent boundary layer excitation shown in
Figure 3. Contribution of the "rst structural mode to the square modulus ���(x�
; 0, k

�
) �� of the wavevector

sensitivity function calculated at the point x
�
"(a/2, b/2) on a simply supported plate, as a function of the

streamwise wavenumber k
�
and for the plate described in section 4.



Figure 4. Wavevector spectra for di!erent types of random excitations at f"1 kHz and corresponding to the
same root-mean-square wall pressure, as a function of the streamwise wavenumber k

�
: , turbulent boundary

layer excitation; - - - -, di!use "eld excitation; **, spatially uncorrelated excitation.
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Figure 4 (bold curve). Because the product of these functions drops to zero when �k �PR, as
�k ��� for a simply supported plate and �k ��� for a clamped plate, the low wavenumber
region of the turbulent wall-pressure #uctuations mainly contributes to the system response
and so, the in"nite integral (29) converges rapidly when approximated by a "nite integral
de"ned over an increasing bounded domain centred on the origin and which may easily be
evaluated numerically. On the other hand, expression (25) requires the quadruple
integration of an oscillating function. It is the combination of all these reasons that justi"es
our choice of a wavevector}frequency formulation for the response of a #ow-excited plate.
The modelling stage of this study has thus led us to the following conclusions. The

governing equations of the problem are given by the set of equations (2}10). Because the
excitation is not deterministic, the system response is described by random processes
characterized, in the wavenumber}frequency domain, by their spectral densities (29, 37,
44}47). It is shown that these spectral densities are obtained from the response of the system
to a harmonic deterministic excitation, this latter being evaluated by solving the set of
equations (30}35) for each contributing wavenumber k. Thus, the basic problem is to "nd
an e$cient method for the determination of the system response to a harmonic excitation.
In the next section, we will use an expansion of the system response in terms of its
eigenmodes. Since the #uid is a gas, these basis functions will then be approximated by using
a perturbation technique.

3. EIGENMODES SERIES REPRESENTATION OF THE PANEL RESPONSE

In order to solve the #uid}structure interaction problem described by the set of equations
(30}35), many authors [11, 23, 24] expand the #uid-loaded response of the panel as
a convergent series of its in vacuo eigenmodes. Indeed, the in vacuo eigenmodes, as well as
the #uid-loaded ones, form a basis of the Hilbert space to which the solution of equations
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(30}35) belongs. If the #uid is a gas, the in vacuo eigenmodes are quite close to the
#uid-loaded structure ones. However, the -uid-loaded eigenmodes are much more suitable
for estimating the accuracy of the approximations based on neglecting the #uid-loading.
Although the coe$cient of the #uid-loaded structure modes do not receive any direct
physical interpretation, they account exactly for the #uid-loading e!ects.
As an alternative, the harmonic response of the system #uid/structure can also be

expanded as a series of its resonance modes or free oscillation modes, these latter being
approximated by a perturbation technique. It can easily be shown that the zero order terms
of this series correspond exactly to the in vacuo eigenmodes expansion [22]. The reader
interested in this approach may refer to reference [34].
In this section, we will "rst give the de"nition of the eigenmodes and eigenfrequencies of

the system structure/#uid. We will then show how the harmonic response of the system, and
more generally the statistics for the response of the randomly excited panel, can be deduced
from the in vacuo eigenmodes using an iterative procedure. Finally, we will discuss the
conditions under which the modal expansions can be simpli"ed.

3.1. EIGENMODE SERIES REPRESENTATION OF THE SYSTEM RESPONSE

The eigenmodes=
�

of the #uid/ba%ed plate system and the corresponding eigenvalues

�
�

satisfy the homogeneous boundary value problem (30}35) which is equivalent, by use of

the Green representation (38), to the following set of integro-di!erential equations:
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(x; �) when x3�� , (53)
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�

(�)"m��

�

, �

�

being the corresponding angular eigenfrequency, and where we

assume for clarity that both #uids in �� and �� have the same characteristics
(�

�
"�

�
"�

�
and c

�
"c

�
"c

�
). From de"nitions (48}50), the weak form of equations

(52) is given by
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/m (54)

for any test function �= which is twice di!erentiable, square integrable up to its second
derivative and satisfying the same boundary conditions as =

�

. Because of the radiation

condition (35), we note, from de"nition (52, 53), that the eigenmodes and eigenvalues of the
#uid-loaded plate system are frequency-dependent. Moreover, an orthogonality
relationship can be deduced from the energetic form (54). After some algebra [22], this leads
to the following eigenmodes series expansion for the system response:
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where S
�

(k; �) is the spatial Fourier transform of =

�

(x; �).
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3.2. LIGHT FLUID APPROXIMATION

Inasmuch as the #uid is a gas, the parameter � is small and it is numerically e$cient to use
a perturbation method [35] to build the solution of the problem. To this end, the
eigenmodes =

�

and the eigenvalues �

�

are "rst sought as Taylor series in the small

parameter �:
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#����
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#2. (56)

It follows, by substituting expansions (56) into equation (54) and by equating to zero the
consecutive powers of �, that, in particular, the "rst order terms can be deduced from the
zero order terms:
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where, for a simply supported plate, the zeroth order approximation of the eigenmodes and
eigenfrequencies of the plate are given by
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An iterative form of higher order approximations can also be obtained, but also involves
higher order integration. The intermediate steps of the derivation are detailed in references
[22, 35]. Finally, the "rst order approximation for the eigenmodes series expansion of the
system response is given by
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�


"��
�


#���
�

and, by denoting S�

�

the spatial Fourier transform of=�

�

:

SI
�

(k; �)"S�

�

(k)#�

��
�

����
�����O���
�

1

�J
�


!�J
��
�

�J
�


�J
�


!m��
!

�J
��

�J
��
!m���

�� (=�
��
,=�*

�

)S�

��
(k)

�=�
��
,=�*

��
�

.

(62)

Such an approximation requires some comments. First, as shown in Part II,
Appendix A.1 for the case of an in"nite plate excited by a TBL, this approximation is valid

away from the acoustic coincidence frequency �
�
"c�

�
�m/D for which the acoustic

wavelength matches the bending wavelength associated with the free waves propagating
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along the in vacuo plate. A uniform expansion of equation (61) as a series of � may be
obtained by applying the asymptotic matching principle generally used to solve a singular
perturbation problem [36].
Second, expansion (61, 62) does not proceed in integral powers of �, but this form can

easily be obtained, when the frequency is not too close to a resonance. For a purely elastic
plate, at or near a resonance (say m��+��

�

), the magnitude of the response is determined

by the leading order term which is proportional to ( j�I[��
�

])�� and which provides

a measure of the radiation damping of the system [37].
Other authors have addressed similar problems [36, 37], but have used di!erent

expressions for the #uid-loading parameter �. This can be explained as follows. We note that
dimensioned physical quantities are involved in the set of equations (30}35) which govern
the #uid}structure interaction problem. In order to be solved numerically, a reduced form
of these equations (54) is often required. To this end, the physical quantities are replaced by
their measure in a coherent system of units (length, mass, time), but the functional form of
these equations remains unchanged. According to the choice of the reference units, either
a particular or a wide class of problems can be treated.
In this study, we have chosen the thickness of the plate as a reference for the lengths; the

other quantities have been written in a standard unit system. Thus, the dimensionless
parameter �"2�

�
/m measures the ratio between the #uid density and the plate density in

a given system of units. As an alternative, Leppington [37] has chosen one acoustic
wavelength as a length reference and de"ned the terms low (or high) #uid loading when � is
either small (or large) with respect to unity. Furthermore, Crighton [36] has pointed out
a unit system such that the parameter � is always small, including heavy #uid/structure
interaction problems. It is thus interesting to expand the solution as a series of this
parameter. However, when these representations are subsequently written in our system of
units, one obtains series (61). As a consequence, the relative errors obtained by truncating, at
a given order, the asymptotic representations of the solution formulated in di!erent
coherent unit systems are always the same.
To complete the asymptotic analysis of our modal formulation, approximate expressions

of the power spectral densities of interest will be given. By substituting equation (61) into the
wavenumber}frequency spectrum (29) of the plate response, one obtains.
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For the spectral density (45) of the sound power radiated into each #uid domain, it
follows that
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A noteworthy feature for the approximation of the modal formulation related to the other
power quantities, in equations (44, 46, 47), is that only a double summation is required,
that is
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The above expressions can be further simpli"ed if the eigenmodes in equation (56) are
approximated by their zero order terms. If coupling terms are neglected, one obtains the
classical modal representation of the response of the #uid-loaded system as a series of the
plate in vacuo eigenmodes.

3.3. SIMPLIFICATION IN THE ACOUSTICAL COUPLING

A priori criteria can be formulated (see Part II, Appendix A1, expression (A.5)) to evaluate
the validity domain of a light #uid approximation if we assume, as suggested in reference
[35], that it is of the same order of magnitude for both a "nite and an in"nite plate. These
criteria provide a maximum frequency �

��
below which the "rst order terms may be

neglected in the approximations (63}70); that is
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�
��
is the &&intrinsic #uid-loading parameter'' introduced by Crighton [36] and corresponds

to the ratio �
�
/m measured in a unit system such that the length unit is the acoustic

wavelength at the critical frequency. k
�
is the plate bending wavenumber.

If condition (71) is satis"ed over the frequency range of interest, then expressions (64, 65)
can be replaced by their zero order approximations
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We note that, in the literature, expression (73) for the modal resonance coe$cient d
�

is

often written in terms of an equivalent modal damping ratio �
�

in the form

d�
�
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� ), (75)

where ��
�

are the angular eigenfrequencies of the in vacuo panel, �

�

accounts for the

internal damping (�
�


"��
�

/2�), and the energy lost through the panel boundaries, in

which case, �
�


"�/m��

�
where � has been de"ned in section 2.4.3.

3.4. MODAL ANALYSIS FOR THE STATISTICS OF THE PANEL RESPONSE

The above expressions can be further simpli"ed according to the nature of the forcing
"eld. To illustrate the approach, we consider, in the following, three types of random
forcing.

3.4.1. Response to an incidence di+use ,eld

We "rst consider the case in which the panel is excited by an in"nite sum of uncorrelated
plane waves whose incidence angles are uniformly distributed over a half-space. Because
our system is linear, a method of solution, in the physical domain, would be to compute the
sensitivity function of the system with k"(k

�
sin � cos�, k

�
sin � sin�) for a discrete set of

incidence angles (�, �) and ten, to sum the contribution of each incident wave to the system
response with a sin � weighting function. In the wavenumber domain, this is equivalent to
considering the following form for the spectrum of the excitation.
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as plotted in Figure 4 (dashed curve). S
�
determines the point-power spectral density of the

excitation and satis"es the requirement S
�
(�)"��

�
S
����
(k; �) d�k. In the space}frequency

domain, the spatial correlation function associated with (76) has the familiar form
sin(k

�
�x!x� �)/k

�
�x!x� � [38].

Under condition (71), the modal excitation term (74) may therefore be written as follows:
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We note that only the radiating (or supersonic) wavenumber components of the panel
eigenmodes are excited by a di!use "eld. Equations (63, 66}69) with the approximations
(73, 74, 77) have been used for the numerical predictions of the velocity and sound radiation
of the plate with an incidence di!use "eld.

3.4.2. Response to turbulent wall-pressure -uctuations

We consider the response of the panel when excited by a weakly stationary and a weakly
homogeneous turbulence #owing along the length direction (see Figure 1). The spectrum of
the wall-pressure #uctuations is assumed for now to be described by the Corcos model [6],
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which can be expressed in the wavenumber domain as
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as also plotted in Figure 4 (bold curve). �
�
(�) is the point-power spectrum which over the

bandwidth considered here (up to 2 kHz) is assumed to be uniform [24],;
�
is the convection

velocity, ¸
�
and ¸

�
are the correlation lengths and correspond to the distance in the

spanwise and streamwise directions over which the wall-pressure #uctuations are strongly
correlated. The choice and the interpretation of the Corcos model are discussed in more
detail in Part II, section 2, of this paper.
As for the case of an in"nite plate (see Part II, Appendix A.2), a criteria can also be

formulated for the case of a "nite dimensional plate such as the correlation function
between the plate displacement and the turbulent forcing "eld can be further simpli"ed. In
particular, such a simpli"cation occurs when the turbulent pressure "eld is correlated over
an area much smaller than the plate surface, i.e., when the plate dimensions are large
compared to the correlation lengths [23]. This condition can be written as
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Requirement (79) de"nes a transition frequency which, if ¸
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+0)1 is a constant derived from experiments). Above this frequency, the
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, ((m, n)O(p, q)), in equation (74) can be neglected with respect to the

diagonal terms ��
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If we assume that our frequency range of interest satis"es condition (71) and (79), then
spectrum (63) of the plate displacement reduces to
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Under these conditions, the simpli"ed forms of expressions (66}69) are readily obtained.

3.4.3. Response to a spatially random ,eld

We now assume that the excitation is white in the wavenumber}frequency domain, i.e.,
the excitation is completely spatially uncorrelated from one point to another. This
excitation corresponds, in the physical domain, to a purely random process, sometimes
referred to as &&rain on the roof '' excitation. An example of this situation in practice would
be when we consider the response of a "nite membrane excited by the Brownian impact of
molecules of the surrounding #uid. Although not strictly physically realizable, this random
process is a convenient approximation analyzing the response of a "nite system to
a broadband wavenumber excitation.
This stationary and homogeneous random process is characterized by a uniform spectral

density:

S
����
(k; �)"S�

�
for all k, �. (81)

It means that the energy content of a purely random "eld is uniformly distributed over the
entire wavenumber}frequency range. However, this de"nition implies that the mean}square
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pressure of such a process is in"nite. To overcome this di$culty, this random "eld is in
practice approximated by an ideal low-pass process described by a uniform spectral density
de"ned over a limited wavenumber band, the domain of which is su$ciently large to
become a limiting form of a purely random process. In our case, the bandwidth in the
wavenumber domain (500 m��) has been chosen so that, given an upper analysis frequency
of 2 kHz, it contains all the modes that contribute to the panel response within this
frequency range. This bandwidth is closely related to the modal convergence criteria which
is presented in Appendix A here.
In this limit and because of the orthogonality relationship between the in vacuo

eigenmodes of the plate, equation (74), valid under condition (71), then simpli"es to:

���
�

(�)+S�

�
(N�

�

)����

�

(82)

and in this case

S
��
(x, x�; �)+S�

�

�
�

��
�

=�
�

(x)=�

�

(x�)

�d�
�

(�) ��

. (83)

4. NUMERICAL EXAMPLES

Simulations have been carried out to predict, for the three types of random forcing
described in the previous section, the response of an untensioned simply supported
aluminium panel of dimensions 0)414�0)314�0)001m thick, for which the damping ratio is
assumed to be constant (�

�

"�"0)01) in all modes.

In order to compare the panel response for di!erent kinds of random excitations, we have
considered the ratio between the power spectral density of the panel response and the
point-power spectral density of the excitation. This is equivalent to calculating the power
spectral density of the panel response to di!erent types of random excitations, all
characterized by a unit point-power spectral density over the frequency bandwidth of
interest and so associated to the same mean-square wall pressure p�

���
, which is de"ned in

the physical domain as R
����
(0; 0) or, in the wavenumber}frequency domain, as

�
�

��

��
�

S
����
(k; �) d�kd�.

The wavenumber spectra of a di!use "eld, a turbulent boundary layer excitation "eld and
a spatially random excitation "eld associated with the same mean-square wall pressure are
plotted in Figure 4 at a "xed frequency f"1 kHz. For an incidence di!use "eld, the energy
content is limited to the wavenumber range [!�/c

�
, �/c

�
]. The weighted distribution of

each contributing incident plane wave (due to a higher probability density near the grazing
angles of incidence) is described by the model. For a turbulent boundary layer excitation,
the main energy #uctuations in the wavenumber spectrum are concentrated around the
convecting scales of the #ow, i.e., near the convective ridge (k

�
&0, k

�
&�/;

�
). The levels of

the wavenumber spectrum for the spatially random excitation is low compared to the others
since it is #at from!500 to 500/m and must have the same mean-square value as above.
Figure 5 shows the in#uence of each kind of excitations on the panel structural response, i.e.,
on the corresponding normalized spectral densities of the panel kinetic energy
S
��
(�)/��

�
S
����
(k; �) d�k ( J/Pa�). The bold line is related to a turbulent boundary layer

excitation of the panel at a high subsonic Mach number (M
�
"0)77), the dashed line to an

incidence di!use acoustic "eld and the thin line, to a purely random "eld. Figure 6 presents



Figure 5. The ratio between the power spectral density of the panel kinetic energy and the point-power spectral
density of the excitation as a function of frequency for three types of random forcing: , turbulent boundary
layer excitation; - - - -, di!use "eld excitation; **, spatially uncorrelated "eld.

Figure 6. The ratio between the power spectral density of the sound power radiated by the panel and the
point-power spectral density of the excitation as a function of frequency for three types of random forcing:

, turbulent boundary layer excitation; - - - -, di!use "eld excitation; **, spatially uncorrelated "eld.
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the normalized spectra for the radiated acoustic sound power, in the three cases considered
above.
Figure 7 represents, in the streamwise wavenumber}frequency domain, the lattice

distribution of the panel resonance frequencies together with the hydrodynamic and
acoustic coincidence lines. It provides a visual interpretation of the coincidence phenomena.
In order to explain the results shown in Figures 5 and 6, one has to bear in mind that the

spectrum levels for the panel structural response will depend on how the system "lters the



Figure 7. Location of the panel eigenfrequencies in the frequency}streamwise wavenumber domain: *�* ,
m"1; *�* , m"2; *#* , m"3; *** , m"4; , hydrodynamic coincidence line (;

�
"225m/s); ** ,

acoustic coincidence line (for m"0).
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wavenumber characteristics of the excitation. It is the modal excitation term (79) that
describes the wavenumber "ltering capabilities of the panel.
For a di!use acoustic "eld excitation, a spatial coincidence occurs if the acoustic

wavenumber (k
�
"�/c

�
) matches a modal wavenumber (�k�

�
#k�



) of the panel. However,

below 2kHz, for the panel of interest, the acoustic wavenumber calculated at the resonant
frequency of each structural mode is lower than the corresponding modal wavenumber, as
shown in Figure 7, from which it can be seen that the acoustic coincidence frequency occurs
at around 11)5kHz. The modal excitation term (77) calculated at the resonant frequency of
each structural mode depends on the supersonic side lobe contribution of each modal
sensitivity function �S�

�

(k) �� in the wavenumber domain. For instance, at 1 kHz, although

the (2, 8) mode has its resonance frequency (1001Hz) closest to the excitation frequency,
only the supersonic wavenumber components of this modematch the spacewise variation of
the excitation (�

��
/c

�
"18)5 m��, �k�

�
#k�

�
"63)9 m��). In this wavenumber range, the

modal excitation term also depends on the relative amplitude of the side lobes of each
modal sensitivity function and the excitation spectrum S

����
(k; �), which must be borne in

mind when comparing this with the in#uence of a TBL excitation.
For a turbulent boundary layer excitation, the modal excitation term has a maximum

value when the convecting scale of the #ow (with the corresponding streamwise
wavenumber k

�
"�/;

�
) is equal to the streamwise modal wavenumber of the panel

(k


"n�/a): this describes the spatial coincidence phenomenon. Moreover, if the maximum

occurs at the resonance frequency of a structural mode (frequency coincidence), then
a hydrodynamic coincidence e+ect occurs and cause a large vibrating response of the panel at
this frequency. However, as shown in Figure 7, this phenomenon is not highly tuned and, for
the con"guration of interest and at a high subsonic Mach number (M

�
"0)77), involves

a whole set of modes with their resonance frequencies in the range up to 2 kHz. For
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instance, for the frequency at which the excitation spectra have been plotted in Figure 4, the
(4, 6) mode of the plate provides the best matching with the turbulent convecting scales
(k



;

�
/�"1)05) and is thus e$ciently excited. However, a large response due to resonant

ampli"cation does not occur because its resonance frequency (900Hz) is not close to the
excitation frequency. On the other hand, resonant modes are not necessarily those which
are the most e$ciently excited. As shown in Figure 7, it appears that most of the modes that
contribute to the panel response in the hydrodynamic coincidence region are non-resonant,
but e$ciently excited modes. Above the hydrodynamic coincidence area, these
non-resonant modes still contribute to the o!-resonant response of the panel, but the
relative contribution of resonant and weakly excited mode increases with frequency.
When comparing the in#uence of a TBL excitation and a di!use "eld on the panel

vibro-acoustic response for a given mean-square pressure level in Figures 5 and 6, we notice
that, up to 2 kHz, the levels for the vibrating response of the panel excited by a di!use "eld
are higher by up to 20}25 dB than those observed for a TBL excitation. This is directly
related to the di!erence levels observed in Figure 4 between the di!use "eld and the TBL
excitation spectra in order to reproduce the same mean-square pressure. It implies that, up
to 2 kHz, the separation distance beyond which the random #uctuations due to the di!use
"eld may be regarded as completely uncorrelated over the plate is greater than the
correlation lengths associated to the turbulent #uctuations. It also implies that the modes
that contribute to the panel response under a di!use "eld excitation are more e$ciently
excited than in the case of a TBL excitation.
In summary, for a given mean-square wall pressure and in the low-frequency domain, the

panel modes have a better coupling with a di!use "eld excitation than with a turbulent
boundary layer excitation that, in turn, excites more e$ciently the structural modes of the
panel than a purely random "eld. For a di!use excitation, the forcing "eld couples well with
di!erent panel modes whereas, for a TBL excitation at a high subsonic Mach number and
for a purely random "eld, the panel modes are uncorrelated (the cross modal excitation
terms are negligible with respect to the diagonal terms). The in#uence of resonant
(frequency coincident) and non-resonant modes can also be studied. For a di!use "eld,
a large proportion of non-resonant modes and resonant modes are e$ciently excited over
a broad frequency range below the acoustic coincidence frequency. A similar situation
occurs for a TBL excitation, but below the hydrodynamic coincidence frequency. For
a purely random "eld, only the resonant terms have a dominant role, especially in the very
low-frequency domain.
A more detailed analysis of the response of an aircraft panel to a turbulent #ow is carried

out, using a wavenumber approach, in section 3 of Part II. In Appendix A here, the
convergence of the modal approach is considered for the three type of random excitations.

5. CONCLUSION

A general and self-contained model is presented for predicting both the vibrating
response and the acoustic radiation of a thin ba%ed plate stressed by in-plane tensions and
excited by a large class of random "elds. The spectral densities of the system response are
expressed, in the wavevector}frequency domain, in terms of the spectral density of the
turbulent excitation &&"ltered'' by the sensitivity function of the plate. This latter quantity
can be computed once for all excitations and is a priori independent of the nature of the
excitation "eld. In practice, it is deduced from the system response to a harmonic excitation
with a spatial dependence scaled on each contributing wavevector. The sensitivity function
can be expressed as a series of eigenmodes for the #uid-loaded system and a perturbation
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method has been applied in order to take advantage of the weak in#uence of the
surrounding #uid on the vibro-acoustic response of the system. A priori physical criteria
have been proposed to simplify these expressions. These approximations assume the
acoustic modal coupling to be neglected well below the acoustic coincidence frequency and,
for a convecting random "eld, the cross-modal excitation terms can be neglected above
a certain frequency. They will be veri"ed in Part II of this paper in the case of an aircraft
fuselage panel excited by a turbulent #ow.
Modal series have been derived for the statistical properties of the panel response to three

types of random excitation and which has been calculated as a function of frequency for
a given mean-square wall pressure. Several trends have been pointed out: (i) the panel
structural modes are more e$ciently excited with an incidence di!use "eld than with the
wall-pressure #uctuations due to a turbulent boundary layer whereas a turbulent excitation
couples better with the panel modes than a purely random "eld; (ii) under a di!use "eld
excitation, the structural modes do not contribute independently to the panel response; they
can be considered as uncorrelated for a turbulent excitation at high subsonicMach number;
the same conclusion applies for a spatially random "eld; (iii) both resonant and
non-resonant modes contribute to the panel response over a broad frequency range, below
the acoustic coincidence frequency for a di!use "eld excitation, and over the hydrodynamic
coincidence area for a turbulent excitation; for a purely random "eld and in the low modal
density region, only the resonant modes have a dominant role.
The convergence properties of the modal series for the vibrating and acoustic response of

the system have also been examined and criteria have been formulated to estimate the
accuracy of the modal approximations according to the nature of the excitation. For
a purely random or a high subsonic turbulent excitation, accounting for mode with
resonant frequencies up to the upper analysis frequency is su$cient to ensure adequate
convergence of the modal series. However, for an incidence di!use "eld, composed of an
in"nity of independent plane waves, it is not clear above which frequency the cross-modal
excitation terms can be neglected. We have shown that this modal coupling has a bene"cial
e!ect on the number of modes required to model the structural response of the system
(below the acoustic coincidence frequency), but one then has to be careful when dealing with
the acoustic response of the system.
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APPENDIX A: CONVERGENCE STUDY

It is important to consider the accuracy of the approximation in relation to the "nite
number of modes retained in the modal approach. We have noted in section 4 that, for
a TBL excitation for instance, the plate response is mainly governed by both the resonant
and non-resonant modes that are e$ciently excited over the hydrodynamic frequency
range. The number of resonant modes whose eigenfrequencies fall within a frequency range
can always be determined. The main di$culty is to estimate the number of non-resonant
modes that will contribute signi"cantly in the modal representation (63) of the solution
because they are highly excited. As discussed in reference [39], this is governed by the
bandwidth of the excitation "eld. Indeed, under approximation (71), the excitation spectrum
S
����
can be expanded as a series of the in vacuo eigenmodes, or structural modes, as follows:

S
����
(x, x�; �)+

�
�

��
�

�
�

����

�s ��
�

(�)=�

�

(x)=�

��
(x�). (A.1)

The non-resonant modes which have a negligible contribution in the excitation
representation (A1) will have a negligible contribution in the system response with the
general expression (63). This formulation provides an e$cient method of determining the
required number of highly excited and non-resonant modes in equation (63) since expansion
(A1) is readily obtained once the excitation model is known. We note that this methodology
can be applied whatever the nature of the excitation and generalized to the case of
#uid-loaded eigenmodes or resonance modes. However, more speci"c rules of convergence
can also be derived according to the nature of the excitation.
To study the convergence of the modal series, we use as an estimator the relative error

between the truncated modal expansion of the solution and an approximation of the
solution when accounting for a su$cient number of modes for the series to converge. In
order to obtain a simple estimation of the error in the solution when we account for an



Figure A1. Comparison of percentage errors at f"2kHz as a function of the number of terms in the modal
summation for the panel kinetic energy: , turbulent boundary layer excitation; - - - -, di!use "eld excitation;
**, spatially uncorrelated excitation.

Figure A2. Comparison of percentage errors at f"2kHz as a function of the number of terms in the modal
summation for the sound power radiated by the panel: , turbulent boundary layer excitation; - - - -, di!use "eld
excitation; } }} } , spatially uncorrelated excitation.
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increasing number of modes, the following simulations have been carried out on
a one-dimensional plate whose length is equal to the panel length. The percentage error at
2 kHz for an increasing number of terms in the modal series is plotted in Figures A1 and A2
for the kinetic energy and the sound power radiated and for the three types of excitations. In
Figure 8, as the number of terms increases, the error for a turbulent excitation (bold line)
and for a purely random excitation (thin line) both collapse towards zero just before the
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number of terms required to reach convergence whereas the error for the di!use "eld
(dashed line) converges earlier towards zero, but at a lower rate.
A simple criterion can be formulated in the general case to determine the number,N

���
, of

structural modes required for convergence of the modal series up to a "xed frequency f.
Convergence is reached when the distance between two nodes of the structural mode shape
is less or equal than the half-wavelength �

�
/2 of the bending wave on the plate at the

analysis frequency, that is, of the function to approximate. It reads as

a/N
���

)�
�
(�)/2, (A.2)

where a is a plate dimension, or

N
���

*a (m/D)��
��/��, (A.3)

where �
�
(�)"2� (D/m)��
�����. Criteria (A.3) is based on the assumption that the

structural modes contribute independently to the system response at the frequency of
interest. This is obvious when the system is excited by a spatially random "eld and, for
a turbulent excitation, this is justi"ed through condition (79). Thus, for f"2 kHz with
a"0)414m for the plate used here, one obtains N

���
*12. This is in agreement with the

results presented in Figure A1.
For an incidence di!use "eld, the situation is somewhat di!erent because the excitation

couples with di!erent structural modes. Performing expansion (A.1) of the correlation
function for a di!use sound "eld (with the typical form sin(k

�
�x!x� � )/k

�
�x!x� � ) in terms

of the plate in vacuo eigenmodes (59), it can be shown that, in order to reach convergence,
the smallest wavelength of the &&trigonometric functions'' must be less or equal to the
acoustic wavelength at the frequency of interest [40]. It suggests that the number N

���
of

modal functions required to reach convergence at the angular frequency � is such that

N
���

*a�/�c
�
. (A.4)

We note that, since, in this example, the analysis frequency is well below the acoustic
coincidence frequency, the coupling due to the di!use "eld between di!erent modes has
a bene"cial e!ect on the convergence properties of the approximate solution with respect to
the convergence properties related to a white or a turbulent excitation (see Figure A1).
Criteria (A.4) leads to N

���
*5 at f"2 kHz, which is in accordance with the results

presented in Figure A1. At higher frequencies at or near the acoustic coincidence frequency,
criteria (A.3) and (A.4) provide the same number of modes for convergence, but, in this
frequency range, a modal formulation of the system response may not be appropriate.
For each kind of excitation, Figure A2 compares the convergence properties for the

power spectral densities of the sound power radiated. Although the convergence rates are
slightly degraded for the approximation of the sound power radiated by the panel with
respect to the approximation of its kinetic energy for a spatially white or a turbulent
excitation, the convergence is obtained for the same number of modes. On the other hand,
for a di!use excitation "eld, a higher number of modes have to be accounted for in order to
reach the convergence limit for the approximation of the sound power radiated with respect
to the approximation of the kinetic energy.
In the case of a spatially random excitation, the results can be understood since, at 2 kHz,

higher order modes are non-resonant and weakly excited modes. Because they do not
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couple, via the excitation, with low order resonant but still weakly excited modes, they do
not contribute to the vibro-acoustic response of the system. In the case of TBL and di!use
"eld excitations, the results require some comments.
In general, when low and high order ine$cient modes are both highly excited, we can

expect a better convergence in the acoustic response than in the structural response since
high order ine$cient modes have smaller radiation e$ciencies than low order modes. The
modal series for which the convergence results are presented have been calculated at 2 kHz.
In our con"guration and in the case of a TBL excitation, this frequency is very close to the
hydrodynamic coincidence frequency for which the number of resonant modes in
coincidence is maximum. It is found that these modes are mostly ine$cient &&edge modes''
with low spanwise modal order, but which are still more e$cient radiators than &&corner
modes'' with the same streamwise modal order [41]. The higher order modes included in
the series are mainly non-resonant and weakly excited modes and so, they have a negligible
contribution to the panel kinetic energy. Because these modes are mostly corner modes
which are very ine$cient radiators, they do not signi"cantly modify the acoustic response of
the panel if they are accounted for in the modal series. However, some higher order modes
are also edge modes which have above average radiation e$ciency at 2 kHz. It results in
a lower convergence rate for the acoustic response of the panel with respect to its vibrating
response.
As noted in section 4, a di!use sound "eld e$ciently excites supersonic edge modes, but

also couples with the supersonic side lobe contribution of subsonic edge modes and, to
a much lesser extent, with the supersonic side lobe contribution of some low order corner
modes. Below the coincidence frequency, the subsonic corner modes which are resonant
contribute signi"cantly to the panel kinetic energy. However, the contribution of the edge
modes to the radiated sound cannot be neglected with respect to the corner modes
contribution and so, a higher number of mode is required to accurately describe the
acoustic response with respect to the structural response.
As a "nal remark, we note that, according to the nature of the excitation, some quantities

can be formulated using a modal summation that do not converge to a limit for an
increasing number of modes. This is the case, for instance, for the frequency-integrated
&&total'' kinetic energy ¹

��
of the panel under a spatially random excitation. This latter

quantity is de"ned by

¹
��

"

��

�
��

S
��
(�) d�. (A.5)

For a spatially random excitation, it may be written as
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The quantity �
�


�
�

is the modal bandwidth of the (m, n) mode of the panel. It can be

related to the constant viscous damping force � per unit area of the panel and per unit
velocity and so, series (A.6) does not converge. Each term of this series represents the
contribution of one mode to the total kinetic energy and, since the energy is uniformly
distributed between the modes, the total kinetic energy is unbounded.
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For a turbulent excitation, we have shown that the main part of the kinetic energy is
concentrated around the modes with a wavelength matching the boundary layer convecting
scales. Moreover, the maximum level for the modal excitation terms decreases as
N��

���
(l'1), thus ensuring the convergence of the modal series for the total kinetic energy of

the panel. For a di!use "eld excitation, numerical simulations have shown that the modal
series is again convergent, as expected.
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